The generator matrix
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X X 1 1 1 1 1 1 1 1 1 2 1 1 X 1
0 X 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 X X X X+2 X+2 X+2 X+2 X+2 X X 0 2 X 0
0 0 X 0 0 0 0 0 0 0 X X+2 X X+2 X+2 X X+2 0 X 0 2 X+2 2 X+2 X+2 X 2 X+2 0 2 X X 0
0 0 0 X 0 0 0 X X+2 X X X 0 X+2 X 0 0 X 2 X X+2 X+2 X X+2 X X+2 0 2 X+2 X+2 2 0 X+2
0 0 0 0 X 0 X X X 2 0 0 2 X+2 X X+2 X X 2 X+2 X+2 2 0 2 0 X+2 2 X 0 X 2 2 X
0 0 0 0 0 X X 2 X+2 X+2 0 X X X 2 0 X X X X 2 2 X+2 X X X+2 X X+2 0 0 X+2 2 0
0 0 0 0 0 0 2 2 2 2 2 0 0 2 2 2 0 0 2 0 2 0 2 0 2 2 2 0 0 0 2 2 2
generates a code of length 33 over Z4[X]/(X^2+2,2X) who´s minimum homogenous weight is 24.
Homogenous weight enumerator: w(x)=1x^0+91x^24+118x^25+247x^26+348x^27+405x^28+516x^29+856x^30+1598x^31+2489x^32+3022x^33+2504x^34+1598x^35+874x^36+578x^37+404x^38+282x^39+219x^40+116x^41+80x^42+14x^43+17x^44+2x^45+4x^46+1x^58
The gray image is a code over GF(2) with n=132, k=14 and d=48.
This code was found by Heurico 1.16 in 7.44 seconds.